Kinetics and Reaction Mechanism of Fenton's-Reagent-Initiated Graft Copolymerization of Acrylonitrile onto Sodium Alginate

S. B. SHAH, C. P. PATEL, and H. C. TRIVEDI*

Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat, India

SYNOPSIS

The kinetics and mechanism of grafting of acrylonitrile (AN) onto sodium alginate (SA) using Fenton's reagent ($Fe^{2+}-H_2O_2$) has been studied. The experimental results are found to be in good agreement with the proposed kinetic scheme. © 1994 John Wiley & Sons, Inc.

INTRODUCTION

In our previous studies we have reported Cericinduced¹ as well as Fenton's-reagent-initiated² grafting of acrylonitrile (AN) onto sodium alginate (SA) and investigated the biodegradable behavior of sodium alginate-graft-acrylonitrile by studying its interactions with different microorganisms.³ This note is a report on the kinetics and mechanism of grafting of AN onto sodium alginate using Fenton's reagent as an initiator.

EXPERIMENTAL

In order to discover the optimal conditions for grafting of acrylonitrile onto sodium alginate using Fenton's reagent as an initiator, polymerization was carried out under various conditions as described earlier.² The variables studied included sulfuric acid concentration, concentrations of initiator components, monomer concentration, reaction time, temperature, and amount of sodium alginate. The results of our previous study² have been used in the present work.

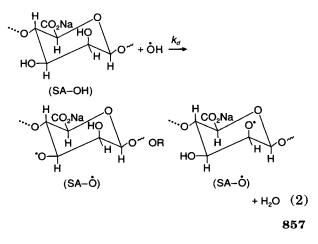
RESULTS AND DISCUSSION

Kinetics and Mechanism

In a system containing H_2O_2 , ferrous ammonium sulfate (FAS), and sodium alginate, H_2O_2 may react with FAS (Fe²⁺) to form 'OH. The hydroxyl radical thus formed abstracts hydrogen from the hydroxyl groups present on the reactive sodium alginate (SA-OH) backbone to produce sodium alginate macroradicals (SA-O'), which react with the monomer (M) to initiate grafting. The following reaction mechanism scheme is proposed for this graft copolymerization:

$$Fe^{2+} + HO - OH \xrightarrow{\kappa_1} Fe^{3+} + HO^- + OH$$
 (1)

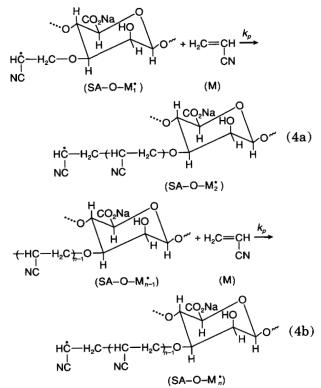
The free radicals ('OH) formed in the above manner attack sodium alginate (SA-OH), giving rise to sodium alginate macroradicals (SA-O').



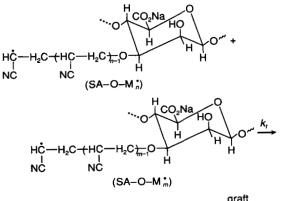
^{*} To whom correspondence should be addressed. Journal of Applied Polymer Science, Vol. 52, 857-860 (1994) © 1994 John Wiley & Sons, Inc. CCC 0021-8995/94/070857-04

(i) Initiation $\begin{array}{c} & \overset{H}{\longrightarrow} & \overset{O}{\longrightarrow} & \overset{K_{i}}{\longrightarrow} & \overset{O}{\longrightarrow} & \overset{K_{i}}{\longrightarrow} & \overset{O}{\longrightarrow} & \overset{K_{i}}{\longrightarrow} & \overset{O}{\longrightarrow} & \overset{K_{i}}{\longrightarrow} & \overset{O}{\longrightarrow} & \overset{O}{\longrightarrow} & \overset{K_{i}}{\longrightarrow} & \overset{O}{\longrightarrow} & \overset$

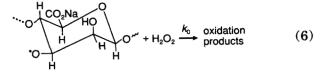
(ii) Propagation



(iii) Termination



(iv) Oxidation



The lives of the growing polymers are relatively short and hence the steady-state approximations may be applied to these radicals. The following equations thus follow:

$$\frac{d[SA-O-M_{1}^{*}]}{dt} = k_{i}[SA-O^{*}][M]$$

$$- k_{p}[SA-O-M_{1}^{*}][M]$$

$$- k_{t}[SA-O-M_{1}^{*}][M]$$

$$+ [SA-O-M_{2}^{*}] + \cdots \} = 0 \quad (7)$$

$$\frac{d[SA-O-M_{2}^{*}]}{dt} = k_{p}[SA-O-M_{1}^{*}][M]$$

$$- k_{t}[SA-O-M_{2}^{*}][M]$$

$$- k_{t}[SA-O-M_{2}^{*}] \{[SA-O-M_{1}^{*}]]$$

$$+ [SA-O-M_{2}^{*}] + \cdots \} = 0 \quad (8)$$

$$\frac{d[SA-O-M_{n}^{*}]}{h} = k_{p}[SA-O-M_{n-1}^{*}][M]$$

$$\frac{dt}{dt} = k_{p}[SA-O-M_{n-1}^{*}][M]$$

$$- k_{p}[SA-O-M_{n}^{*}][M]$$

$$- k_{t}[SA-O-M_{n}^{*}]\{[SA-O-M_{1}^{*}]\}$$

$$+ [SA-O-M_{2}^{*}] + \cdots \} = 0 \quad (9)$$

Adding Eqs. (7), (8), and (9), we get

$$k_i[SA-O^*][M] - k_p[SA-O-M^*_n][M]$$

- $k_t \sum [SA-O-M^*_n]^2 = 0$ (10)

The $[SA-O-M_n^*]$ is the concentration of the longest polymeric radical and as it is small, its concentration can be neglected. Therefore, we get

$$k_{i}[\text{SA-O'}][\text{M}] - k_{t} \sum [\text{SA-O-M}_{n}^{*}]^{2} = 0$$

$$\therefore \sum [\text{SA-O-M}_{n}^{*}] = \sqrt{\frac{k_{i}}{k_{t}}[\text{SA-O'}][\text{M}]} \quad (11)$$

Similarly for 'OH radical the following equation can be written:

$$\frac{d[`OH]}{dt} = k_1[H_2O_2][Fe^{2+}] - k_d[SA][`OH] = 0$$

$$\therefore [`OH] = \frac{k_1[H_2O_2][Fe^{2+}]}{k_d[SA]}$$
(12)

Further, we can write

$$\frac{d[SA-O^{*}]}{dt} = k_{d}[SA][OH] - k_{i}[SA-O^{*}][M]$$
$$- k_{0}[SA-O^{*}][H_{2}O_{2}] = 0$$
$$\therefore [SA-O^{*}] = \frac{k_{d}[SA][OH]}{\{k_{i}[M] + k_{0}[H_{2}O_{2}]\}}$$
(13)

Putting Eq. (12) in (13), we get

$$[SA-O^{*}] = \frac{k_{1}[H_{2}O_{2}][Fe^{2+}]}{\{k_{i}[M] + k_{0}[H_{2}O_{2}]\}}$$
(14)

Substituting Eq. (14) in (11), we get

$$\sum [SA-O-M_{n}^{*}] = \sqrt{\frac{k_{i}}{k_{t}} [M] \frac{k_{1}[H_{2}O_{2}][Fe^{2+}]}{\{k_{i}[M] + k_{0}[H_{2}O_{2}]\}}}$$
(15)

The rate of polymerization, R_p , is given by

$$R_p = k_p[\mathbf{M}] \sum [\mathbf{SA} - \mathbf{O} - \mathbf{M}_n^*]$$
(16)

Upon substituting Eq. (15) in (16), we get

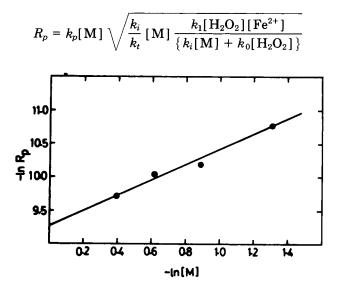


Figure 1 Plot of $\ln R_p$ vs. $\ln[M]$. (Data taken from Ref. 2.

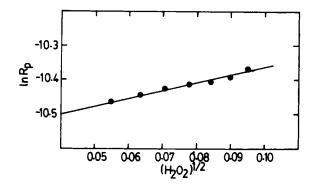


Figure 2 Plot of $\ln R_p$ vs. $[H_2O_2]^{0.5}$. (Data taken from Ref. 2).

or

$$R_{p} = k_{p} [\mathbf{M}]^{3/2} \frac{k_{i}^{1/2} k_{1}^{1/2}}{k_{t}^{1/2}} \times \frac{[\mathbf{H}_{2}\mathbf{O}_{2}]^{1/2} [\mathbf{F}\mathbf{e}^{2+}]^{1/2}}{\{k_{i}[\mathbf{M}] + k_{0}[\mathbf{H}_{2}\mathbf{O}_{2}]\}^{1/2}} \quad (17)$$

$$\ln R_{p} = C_{1} + \frac{1}{2} \ln [H_{2}O_{2}] + \frac{1}{2} \ln [Fe^{2+}] + \frac{3}{2} \ln [M] - \frac{1}{2} \ln k_{i}[M] \left\{ 1 + \frac{k_{0}[H_{2}O_{2}]}{k_{i}[M]} \right\}$$
(18)

where $C_1 = \ln k_p + \frac{1}{2} \ln k_i + \frac{1}{2} \ln k_1 - \frac{1}{2} \ln k_t$. Since $k_i \ge k_0$ and $[M] \ge [H_2O_2]$, then $k_0[H_2O_2] \le k_i[M]$ and let $x = k_0[H_2O_2]/k_i[M]$

$$\ln R_p = C_1 + \frac{1}{2} \ln[H_2O_2] + \frac{1}{2} \ln[Fe^{2+}] + \frac{3}{2} \ln[M]$$
$$- \frac{1}{2} \ln k_i[M] - \frac{1}{2} \ln(1+x)$$
$$\ln R_p = C_1 + \frac{1}{2} \ln[H_2O_2] + \frac{1}{2} \ln[Fe^{2+}]$$

$$-\frac{1}{2} \ln \left[M \right] - \frac{1}{2} \ln k_i - \frac{1}{2} \ln \left[M \right] - \frac{1}{2} \left\{ x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots \right\}$$
(19)

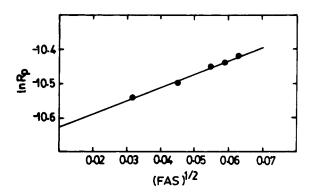


Figure 3 Plot of $\ln R_p$ vs. [FAS]^{0.5}. (Data taken from Ref. 2.

Since the value of x is very small, the terms involving x^2 , x^3 , etc. can be neglected and we get,

$$\ln R_{p} = C_{1} + \frac{1}{2} \ln[H_{2}O_{2}] + \frac{1}{2} \ln[Fe^{2+}] + \frac{3}{2} \ln[M] - \frac{1}{2} \ln k_{i} - \frac{1}{2} \ln[M] \quad (20) \ln R_{p} = C_{2} + \frac{1}{2} \ln[H_{2}O_{2}] + \frac{1}{2} \ln[Fe^{2+}] + \ln[M] \quad (21)$$

where $C_2 = C_1 - \frac{1}{2} \ln k_i$.

According to Eq. (21), the plots $\ln R_p$ versus $\ln[M]$, $\ln R_p$ versus $\ln[H_2O_2]^{1/2}$, and $\ln R_p$ versus $\ln[Fe^{2+}]^{1/2}$ should be linear and are found to be so

as shown in Figures 1, 2, and 3, respectively, thus confirming the validity of the above reaction scheme.

REFERENCES

- 1. S. B. Shah, C. P. Patel, and H. C. Trivedi, *High Performance Polym.*, 4, 151 (1992).
- 2. S. B. Shah, C. P. Patel, and H. C. Trivedi, J. Appl. Polym. Sci., to appear.
- 3. S. B. Shah, C. P. Patel, and H. C. Trivedi, Communicated to J. Polym. Mat., to appear.

Received July 26, 1993 Accepted October 20, 1993